Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409043

RESUMO

Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Exossomos , MicroRNAs , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/metabolismo , Exossomos/metabolismo , Feminino , Humanos , MicroRNAs/metabolismo , Prognóstico , Qualidade de Vida
2.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36635239

RESUMO

Navigating through an environment requires knowledge about one's direction of self-motion (heading) and traveled distance. Behavioral studies showed that human participants can actively reproduce a previously observed travel distance purely based on visual information. Here, we employed electroencephalography (EEG) to investigate the underlying neural processes. We measured, in human observers, event-related potentials (ERPs) during visually simulated straight-forward self-motion across a ground plane. The participants' task was to reproduce (active condition) double the distance of a previously seen self-displacement (passive condition) using a gamepad. We recorded the trajectories of self-motion during the active condition and played it back to the participants in a third set of trials (replay condition). We analyzed EEG activity separately for four electrode clusters: frontal (F), central (C), parietal (P), and occipital (O). When aligned to self-motion onset or offset, response modulation of the ERPs was stronger, and several ERP components had different latencies in the passive as compared with the active condition. This result is in line with the concept of predictive coding, which implies modified neural activation for self-induced versus externally induced sensory stimulation. We aligned our data also to the times when subjects passed the (objective) single distance d_obj and the (subjective) single distance d_sub. Remarkably, wavelet-based temporal-frequency analyses revealed enhanced theta-band activation for F, P, and O-clusters shortly before passing d_sub. This enhanced activation could be indicative of a navigation related representation of subjective distance. More generally, our study design allows to investigate subjective perception without interfering neural activation because of the required response action.


Assuntos
Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Movimento (Física) , Potenciais Evocados , Eletroencefalografia
3.
Prog Neurobiol ; 205: 102117, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224808

RESUMO

The visually-based control of self-motion is a challenging task, requiring - if needed - immediate adjustments to keep on track. Accordingly, it would appear advantageous if the processing of self-motion direction (heading) was predictive, thereby accelerating the encoding of unexpected changes, and un-impaired by attentional load. We tested this hypothesis by recording EEG in humans and macaque monkeys with similar experimental protocols. Subjects viewed a random dot pattern simulating self-motion across a ground plane in an oddball EEG paradigm. Standard and deviant trials differed only in their simulated heading direction (forward-left vs. forward-right). Event-related potentials (ERPs) were compared in order to test for the occurrence of a visual mismatch negativity (vMMN), a component that reflects preattentive and likely also predictive processing of sensory stimuli. Analysis of the ERPs revealed signatures of a prediction mismatch for deviant stimuli in both humans and monkeys. In humans, a MMN was observed starting 110 ms after self-motion onset. In monkeys, peak response amplitudes following deviant stimuli were enhanced compared to the standard already 100 ms after self-motion onset. We consider our results strong evidence for a preattentive processing of visual self-motion information in humans and monkeys, allowing for ultrafast adjustments of their heading direction.


Assuntos
Eletroencefalografia , Animais , Atenção , Potenciais Evocados , Haplorrinos , Humanos
4.
Fluids Barriers CNS ; 17(1): 31, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321535

RESUMO

BACKGROUND: The most threatening metastases in breast cancer are brain metastases, which correlate with a very poor overall survival, but also a limited quality of life. A key event for the metastatic progression of breast cancer into the brain is the migration of cancer cells across the blood-brain barrier (BBB). METHODS: We adapted and validated the CD34+ cells-derived human in vitro BBB model (brain-like endothelial cells, BLECs) to analyse the effects of patient serum on BBB properties. We collected serum samples from healthy donors, breast cancer patients with primary cancer, and breast cancer patients with, bone, visceral or cerebral metastases. We analysed cytokine levels in these sera utilizing immunoassays and correlated them with clinical data. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro. RESULTS: The BLECs cultured together with brain pericytes in transwells developed a tight monolayer with a correct localization of claudin-5 at the tight junctions (TJ). Several BBB marker proteins such as the TJ proteins claudin-5 and occludin, the glucose transporter GLUT-1 or the efflux pumps PG-P and BCRP were upregulated in these cultures. This was accompanied by a reduced paracellular permeability for fluorescein (400 Da). We then used this model for the treatment with the patient sera. Only the sera of breast cancer patients with cerebral metastases had significantly increased levels of the cytokines fractalkine (CX3CL1) and BCA-1 (CXCL13). The increased levels of fractalkine were associated with the estrogen/progesterone receptor status of the tumour. The treatment of BLECs with these sera selectively increased the expression of CXCL13 and TJ protein occludin. In addition, the permeability of fluorescein was increased after serum treatment. CONCLUSION: We demonstrate that the CD34+ cell-derived human in vitro BBB model can be used as a tool to study the molecular mechanisms underlying cerebrovascular pathologies. We showed that serum from patients with cerebral metastases may affect the integrity of the BBB in vitro, associated with elevated concentrations of specific cytokines such as CX3CL1 and CXCL13.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias da Mama/sangue , Quimiocina CX3CL1/sangue , Quimiocina CXCL13/sangue , Modelos Biológicos , Idoso , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica
5.
Curr Pharm Des ; 26(13): 1417-1427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175838

RESUMO

Brain metastases are a major cause of death in breast cancer patients. A key event in the metastatic progression of breast cancer in the brain is the migration of cancer cells across the blood-brain barrier (BBB). The BBB is a natural barrier with specialized functions that protect the brain from harmful substances, including antitumor drugs. Extracellular vesicles (EVs) sequestered by cells are mediators of cell-cell communication. EVs carry cellular components, including microRNAs that affect the cellular processes of target cells. Here, we summarize the knowledge about microRNAs known to play a significant role in breast cancer and/or in the BBB function. In addition, we describe previously established in vitro BBB models, which are a useful tool for studying molecular mechanisms involved in the formation of brain metastases.


Assuntos
Neoplasias da Mama , MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Barreira Hematoencefálica , Encéfalo , Neoplasias da Mama/genética , Humanos , MicroRNAs/genética , Metástase Neoplásica
6.
Cereb Cortex Commun ; 1(1): tgaa042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296111

RESUMO

Previous studies in the macaque monkey have provided clear causal evidence for an involvement of the medial-superior-temporal area (MST) in the perception of self-motion. These studies also revealed an overrepresentation of contraversive heading. Human imaging studies have identified a functional equivalent (hMST) of macaque area MST. Yet, causal evidence of hMST in heading perception is lacking. We employed neuronavigated transcranial magnetic stimulation (TMS) to test for such a causal relationship. We expected TMS over hMST to induce increased perceptual variance (i.e., impaired precision), while leaving mean heading perception (accuracy) unaffected. We presented 8 human participants with an optic flow stimulus simulating forward self-motion across a ground plane in one of 3 directions. Participants indicated perceived heading. In 57% of the trials, TMS pulses were applied, temporally centered on self-motion onset. TMS stimulation site was either right-hemisphere hMST, identified by a functional magnetic resonance imaging (fMRI) localizer, or a control-area, just outside the fMRI localizer activation. As predicted, TMS over area hMST, but not over the control-area, increased response variance of perceived heading as compared with noTMS stimulation trials. As hypothesized, this effect was strongest for contraversive self-motion. These data provide a first causal evidence for a critical role of hMST in visually guided navigation.

7.
Sci Rep ; 8(1): 12399, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120337

RESUMO

Interaction with the environment requires fast and reliable sensory processing. The visual system is confronted with a continuous flow of high-dimensional input (e.g. orientation, color, motion). From a theoretical point of view, it would be advantageous if critical information was processed independent of attentional load, i.e. preattentively. Here, we hypothesized that visual motion is such a critical signal and aimed for a neural signature of its preattentive encoding. Furthermore, we were interested in the neural correlates of predictability of linear motion trajectories based on the presence or absence of preceding motion. We presented a visual oddball paradigm and studied event-related potentials (ERPs). Stimuli were linearly moving Gabor patches that disappeared behind an occluder. The difference between deviant and standard trials was a trajectory change which happened behind the occluder in deviant trials only, inducing a prediction error. As hypothesized, we found a visual mismatch negativity-component over parietal and occipital electrodes. In a further condition, trials without preceding motion were presented in which the patch just appeared from behind the occluder and, hence, was not predictable. We found larger ERP-components for unpredictable stimuli. In summary, our results provide evidence for a preattentive and predictive processing of linear trajectories of visual motion.


Assuntos
Atenção/fisiologia , Potenciais Evocados/fisiologia , Percepção de Movimento/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino
8.
Front Hum Neurosci ; 11: 70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261078

RESUMO

Humans can perceive and estimate approximate numerical information, even when accurate counting is impossible e.g., due to short presentation time. If the number of objects to be estimated is small, typically around 1-4 items, observers are able to give very fast and precise judgments with high confidence-an effect that is called subitizing. Due to its speed and effortless nature subitizing has usually been assumed to be preattentive, putting it into the same category as other low level visual features like color or orientation. More recently, however, a number of studies have suggested that subitizing might be dependent on attentional resources. In our current study we investigated the potentially preattentive nature of visual numerical perception in the subitizing range by means of EEG. We presented peripheral, task irrelevant sequences of stimuli consisting of a certain number of circular patches while participants were engaged in a demanding, non-numerical detection task at the fixation point drawing attention away from the number stimuli. Within a sequence of stimuli of a given number of patches (called "standards") we interspersed some stimuli of different numerosity ("oddballs"). We compared the evoked responses to visually identical stimuli that had been presented in two different conditions, serving as standard in one condition and as oddball in the other. We found significant visual mismatch negativity (vMMN) responses over parieto-occipital electrodes. In addition to the event-related potential (ERP) analysis, we performed a time-frequency analysis (TFA) to investigate whether the vMMN was accompanied by additional oscillatory processes. We found a concurrent increase in evoked theta power of similar strength over both hemispheres. Our results provide clear evidence for a preattentive processing of numerical visual information in the subitizing range.

9.
Dev Biol ; 386(2): 321-30, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374157

RESUMO

Despite major advances in high-throughput and computational modelling techniques, understanding of the mechanisms regulating tissue specification and differentiation in higher eukaryotes, particularly man, remains limited. Microarray technology has been explored exhaustively in recent years and several standard approaches have been established to analyse the resultant datasets on a genome-wide scale. Gene expression time series offer a valuable opportunity to define temporal hierarchies and gain insight into the regulatory relationships of biological processes. However, unless datasets are exactly synchronous, time points cannot be compared directly. Here we present a data-driven analysis of regulatory elements from a microarray time series that tracked the differentiation of non-immortalised normal human urothelial (NHU) cells grown in culture. The datasets were obtained by harvesting differentiating and control cultures from finite bladder- and ureter-derived NHU cell lines at different time points using two previously validated, independent differentiation-inducing protocols. Due to the asynchronous nature of the data, a novel ranking analysis approach was adopted whereby we compared changes in the amplitude of experiment and control time series to identify common regulatory elements. Our approach offers a simple, fast and effective ranking method for genes that can be applied to other time series. The analysis identified ELF3 as a candidate transcriptional regulator involved in human urothelial cytodifferentiation. Differentiation-associated expression of ELF3 was confirmed in cell culture experiments and by immunohistochemical demonstration in situ. The importance of ELF3 in urothelial differentiation was verified by knockdown in NHU cells, which led to reduced expression of FOXA1 and GRHL3 transcription factors in response to PPARγ activation. The consequences of this were seen in the repressed expression of late/terminal differentiation-associated uroplakin 3a gene expression and in the compromised development and regeneration of urothelial barrier function.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Urotélio/embriologia , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Impedância Elétrica , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Análise em Microsséries , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/genética , Urotélio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...